- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ko, Yeong Hwan (3)
-
Magnusson, Robert (3)
-
Razmjooei, Nasrin (3)
-
Bootpakdeetam, Pawarat (2)
-
Hemmati, Hafez (2)
-
Lee, Kyu Jin (2)
-
Abdullah Simlan, Fairooz (1)
-
Buchanan-Vega, Joseph (1)
-
Chen, Ren-Jie (1)
-
Gupta, Neelam (1)
-
Lee, Sun-Goo (1)
-
Simlan, Fairooz A. (1)
-
Svavarsson, Halldor G. (1)
-
Vasilyev, Jonathan (1)
-
Zhang, Shanwen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ko, Yeong Hwan; Razmjooei, Nasrin; Hemmati, Hafez; Magnusson, Robert (, ArXivorg)Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to be basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. The fact that the lattice fields remember the isolated particle fields is referred here as Mie modal memory. On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying the physical basis of general resonant photonic lattices.more » « less
-
Magnusson, Robert; Lee, Kyu Jin; Hemmati, Hafez; Bootpakdeetam, Pawarat; Vasilyev, Jonathan; Simlan, Fairooz A.; Razmjooei, Nasrin; Ko, Yeong Hwan; Zhang, Shanwen; Lee, Sun-Goo; et al (, Proc. SPIE)The 1D canonical model is rich in properties and conceptually transparent, with all the main conclusions being applicable to 2D metasurfaces and periodic photonic slabs. We explain the operative physical mechanisms grounded in lateral leaky Bloch modes. We summarize the band dynamics of the leaky stopband. With several examples, we demonstrate that Mie scattering is not causative in resonant reflection. Illustrated applications include a wideband reflector at infrared bands as well as resonant reflectors with triangular profiles. We quantify the improved efficiency of a silicon reflector operating in the visible region relative to loss reduction as realizable with sample hydrogenation. A resonant polarizer with record performance is presented.more » « less
An official website of the United States government

Full Text Available